
Applications of Cogent TYPE-C™ Columns

Clinical Applications continued

For many other Clinical applications go to www.mtc-usa.com and click on Knowledge Base.

3-Hydroxy-3-Methylglutaric Acid (HMG) in Urine by ANP LC-MS

Figure 61.

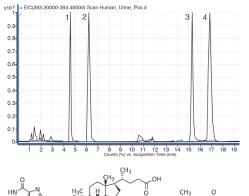
Method Conditions

4µm, 100Å Catalog No.: 70000-15P-2 Dimensions: 2.1 x 150mm Mobile Phase: A: DI H₂O / 10mm ammonium formate

B: 95% acetonitrile/5% DI water/10mm ammonium formate (v/v) Gradient: time (min.) %B 95 30 5 30 8 95

Post Time: 3 min Injection vol.: Jul. Flow rate: 0.4mL/min

Detection: ESI - NEG - Agilent 6210 MSD TOF mass spectrometer Peak: 1. 3-hydroxy-3-methylglutaric acid


161.0455m/z [M-H] in urine sample

Discussion

A selective, specific, and sensitive method based on LC-MS analysis has been developed for the determination of 3-hydroxy-3-methylglutaric acid (a.k.a. meglutol) in urine samples. The method can be also used in the analysis of plasma samples after precipitation of plasma proteins with acetonitrile. The retention was achieved using a Cogent Diamond Hydride™ column. This method can be used for screening of large numbers of urine or plasma samples, due to simple sample preparation and rapid equilibration of the Cogent columns when gradient analysis is used.

Metabolites in Human Urine by ANP LC-MS

Figure 62.

	Counts (%) vs. Acquisi	non rime (min)		
HN N HOW	CH ₃	OH CH ₃ – N ⁺ - CH		CH ₃ I + HOCH ₂ CH ₂ −N − CH CH ₃
1. Hypoxanthine	2. Chenodeoxych	olic acid	3. Betaine	4. Choline

Method Conditions

Column: Cogent Diamond **Gradient: Hydride™**, 4μm, 100Å time (min.) Catalog No.: 70000-15P-2 0.0 Dimensions: 21 x 150mm 0.2 Mobile Phase: 30.0 35.0

A: DI water + 0.1% formic acid B: Acetonitrile + 0.1% formic

40.0 Flow rate: Detection: ESI pos - Agilent 6210 MSD TOF mass spectrometer

35 1

%В

95

95

50

50

95

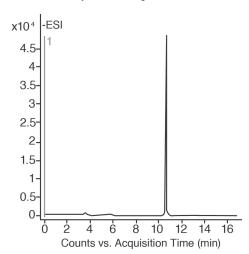
Sample: Human Urine - after simple extraction Peaks: 1. Hypoxanthine;

137.04580m/z (M+H)+, RT =

4.98 min

2. Chenodeoxycholic acid: 393.29990m/z (M+H)+, RT =

3. Betaine: 118.08680m/z M+.


RT = 15.27 min

4. Choline; 104.10754m/z

(M+H)+, RT = 16.82 min Figure: EIC - extracted ion chromatogram of selected compounds (1,2,3,4)

Galactose-1-Phosphate by ANP LC-MS

Figure 63.

Method Conditions

Column: Cogent Diamond Hydride™,

Catalog No.: 70000-15P-2

Dimensions: 2.1 x 150mm

Mobile Phase:

A: DI $H_3O / 0.1\%$ formic acid (v/v)B: 90% acetonitrile/10% DI water/ 16.5mm ammonium acetate (v/v)

Galactose-1-phosphate

time (min.)	%B
0	95
1	95
3	85
6	85
7	75
9	75
10	50
12	50
13	30
15	30
15.01	95

Gradient:

Post Time: 5 min Injection vol.: 1uL Flow rate: 0.4mL/min Detection: ESI - NEG -Agilent 6210 MSD TOF mass spectrometer Sample: Stock Standard: 1mg/mL galactose-1phosphate in DI water, stored at -20°C

Peaks: Galactose-1-phosphate, 259.0224m/z (M-H)

Discussion

This method is useful as a quantitative screening or routine clinical test to detect infants suspected of having a defect of galactose metabolism. It can also be used to monitor blood levels of galactose-1-phosphate in children with galactosemia who are on a lactose-free diet.