Determination of Atropine

Rugged & Fast without Paired Ions

Method Conditions

Column: Cogent UDC-Cholesterol™ 4mm, 100A
Catalog No.: 69069-15P
Dimensions: 4.6 x 150 mm
Solvents: A: DI water + 0.1% acetic acid + 0.005% TFA
B: Acetonitrile + 0.1% acetic acid + 0.005% TFA
Both solutions were vacuum filtered through a 0.45µm nylon filter (MicroSolv Technology Corp.)

Mobile phase: 80%A/20%B isocratic run
Flow rate: 1 mL/min.
Sample: Prepared in 50% solution A/50% solution B, concentration 1 mg/mL
Sample was filtered through a 0.45 µm nylon membrane HPLC filter prior to HPLC-UV injections. (MicroSolv Technology Corp.)

Peak: Atropine RT = 5.94 min
Detection: UV 214 nm

Discussion

Ion-pair chromatography (IPC) is commonly used in order to retain atropine on ordinary Type-A and Type-B reversed phase HPLC columns. Beside long equilibration times with these columns, IPC often suffers from poor robustness. The aim of this study was to develop a robust and simple HPLC method for testing of atropine. Using a Cogent UDC-Cholesterol™ column and an isocratic elution flow rate 1 mL/min gave symmetrical peak for this tropane alkaloid.

The method presented is simple, accurate and reproducible. The sensitivity is sufficient for the proper determination of atropine in plasma after intravenous administration of the drug to hospitalised patients. This method is also useful for testing for drug poisoning and for stability testing of atropine solutions during manufacturing. The linear range of detection for atropine was around 5.0 µg/mL with a limit of quantification (LOQ) 10.0 µg/mL.

For more information visit www.MTC-USA.com

Note: Being potentially deadly, Atropine derives its name from Atropos, one of the three Fates who, according to Greek mythology, chose how a person was to die. Atropine is a core medicine in the World Health Organization’s “Essential Drugs List”, which is a list of minimum medical needs for a basic health care system.